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Abstract--For thermalhydraulic systems analysis, linear interpolation algorithms are commonly used for 
the calculation of thermodynamic properties. However, these algorithms can use a substantial amount of 
computer time and memory. An alternative to this approach suggested in the past is the use of 
approximation formulas. Such formulas for the calculation of the thermodynamic properties of light water 
for saturation conditions are presented here, based on the 1984 NBS/NRC Steam Tables, The range of 
these approximations is from below l b to just below the critical point (22.055 MPa) with a deviation from 
tabulated values of not more than 0.22%. The formulas were determined by the method of least squares, 
enabling a minimization of deviations from the line of best fit and the fitting of functions simple enough 
to be used with programmable calculators, as well as microcomputers. In addition to the rapid calculation 
of the properties, the simple curve fits are instrumental in the development of the rate form of the equation 
of state. 

Since any given property cannot be accurately fitted over the entire pressure range with a single simple 
expression, the pressure range was split into subranges. Special care was taken to ensure that the slopes 
of the curve fits were continuous across the boundaries since discontinuities in the slopes of the property 
tables can cause instabilities and failure of search algorithms in typical computer codes. 

Key Words: water properties, curve fit, fast, saturation. 

I N T R O D U C T I O N  

In the analysis of flow systems, the thermodynamic properties are usually calculated by linear 
interpolation algorithms applied to thermodynamic tables stored on computer. However, the 
storage of these steam tables can occupy a large amount of computer memory. As well, the linear 
interpolation algorithms require a searching algorithm to select the proper numbers from the tables. 
Thus the use of such algorithms can considerably tax computer running time. An alternative to 
this method is the employment of approximate formulas, similar to those described by Firla (1984), 
which can rapidly compute the value of a property with satisfactory accuracy for the purpose of 
system analysis. 

This paper concentrates on the thermodynamic properties of light water for saturation 
conditions. At saturation, the temperature can be expressed as a function of pressure only. 
Therefore, we can represent the properties by a number of simple functions containing one 
independent variable: pressure. 

In addition to the direct calculation of thermodynamic properties, these approximation functions 
can be applied to the determination of the rate form of the equation of state (Garland & Sollychin 
1988). 

A P P R O X I M A T I O N  M E T H O D  

The approach taken in developing the correlations minimized the deviations from the reference 
steam tables. To maintain a high accuracy it was necessary to subdivide the range of pressure 
variation into several regions. The simple functions used were fitted to the data by the method of 
least squares, as discussed in the following section. 

As system codes often require the slopes of the properties, the fits to the steam table by a set 
of approximation functions, were required to exhibit a continuous first derivative across the entire 
range of pressure. 
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Leas t - squares  m e t h o d  

We represent a set of  n data points by some relationship y - f ( x ) ,  containing p unknown 
parameters al,  a2 . . . . .  ap, the deviations or residuals are given by 

D; = f ( x ; )  - y;. [1 ] 

The sum of  the squares of  the deviations, 

S = ~ D~ ~ ~ I f ( x , ) -  y,]2, [2] 
i= l  i=1 

is a function of at,  a2 . . . . .  ap. The parameters are determined such that S is a minimum 
(dS /da l  = 0, dS/da2  = 0 . . . . .  dS /dap  = 0). 

I f  we take y = f ( x )  to be a linear function (y = al + a2x ), the residuals are Di = (al + a2xi) --Yi, 
SO that 

S = ( a  I ÷ a E x  I - -  y l )  2 ÷ ( a  1 ÷ a 2 x  2 - y2)  2 ÷ . . .  ÷ ( a  I ÷ a 2 x  n - -  yn)  2. [3] 

On differentiating S with respect to a~ and a2, two equations are obtained: 

dS 
dal = 2(al + a2xt -- Yl) + 2(al + a2x2 -- Y2) + . .  • + 2(al + a2x,, -- Yn) = 0 

and 

dS 
2 a  Ja-- = 2(x0(at + a2xt - Yl) + 2(x2)(aj + a2x2 - Y2) + . . -  + 2(x,) (al + a2x,  - y , )  = 0 

Dividing by two and collecting the coefficients of  a~ and a2, we get 

and 

and 

Yi nat + i= l xl a2 = i I 

( i = ~ l x l ) a l + ( i ~ = l x ~ ) a 2 = i ~ l x l Y i "  

Similarly, for a second-order polynomial (quadratic equation): 

4 a , +  ~ x ,  0 2 +  ~ x  2 a 3 = ~ ' ~ y i ,  
\ i = 1  i=1 i=1 

( i ~ ' ~ l X i ) a l ÷ ( i ~ _ l X ~ ) a 2 ÷ ( i ~ ' = l x ~ ) a 3 = i ~ = l X i y i '  

[4] 

[5] 

[6a] 

[6b] 

[6cl 

These equations can be solved for at, a2 and a3 to give the function y = a~ + a2x + a3 x2. Higher 
order polynomials may also be fitted in this manner, of  course. 

Correlations are often described by a correlation constant, r. This number expresses the strength 
and direction of  the correlation and can vary from + 1.00 to - 1.00. For positive correlations where 
an increase in one variable tends to lead to an increase in the other variable being considered, r 
is positive. For negative correlations where an increase in one variable tends to lead to a decrease 
in the other, r is negative. The largest magnitude of  r is 1.00 which represents a perfect correlation. 
Thus the closer the points in a plot of  the two variables come to falling on the line of  best fit, the 
nearer r will be to + 1.00 or - 1.00. The following section describes different types of  functions 
that can be determined using the method of  least squares. The correlation constant can be used 
as a way to compare each function and to see if the range being fitted is too large to obtain a high 
enough accuracy with the steam tables. 



APPROXIMATION FUNCTIONS FOR CALCULATION OF THERMODYNAMIC PROPERTIES 

Table 1. Transforming functions into a linear form 

Function Operations on data Linear form 

y = a + b  x ~ -  y = a  +b 
X X 

x =*log x 
y = ax b y =*log y (log y ) = b (log x) + log a 
y = aexp(bx) y=*logy (logy) = bx + log a 
y = a log x + b x=*log x y = a(log x) + b 

335 

The cor re la t ion  cons t an t  for  y = ax + b is ca lcu la ted  as 

b y, + a ~ (x,y,) 
i = l  i f f i l  n 

r m  

~ ( y ) 2 _  \ ~ - i /  

l f f i l  n 

Similar ly ,  for  y = ax 2 + bx + c, 

[7] 

c ~ y, + b  ~ ( x i y , )+a  ~ (x~y,) 
i - I  i - I  i - I  n 

r ~ -  2 

i f f i l  n 

Using least squares for  other functions 

D a t a  can  be a p p r o x i m a t e d  by  o the r  funct ions  which include power ,  exponent ia l  and  logar i thmic  
forms.  The  coefficients o f  each o f  these funct ions  can be de te rmined  using [5] by  a l ter ing the da ta ,  
as shown in tab le  1, to t r ans fo rm the funct ions  in to  a l inear  form. The  power  funct ion and  the 
exponen t ia l  funct ion  are  expected to be useful in p roduc ing  an accura te  curve fit o f  the 
t h e r m o d y n a m i c  proper t ies .  However ,  the m e t h o d  o f  least  squares  de te rmines  these funct ions  such 
tha t  x = 0 for  y = 0. To  ob t a in  be t te r  accuracy  with  these curves,  we can  shift  the d a t a  by add ing  
to or  sub t rac t ing  f rom the x and  y values.  F o r  example ,  figure l (a)  shows two curves pass ing  

t 

7 

/ /  y-Yo 

/ 9 .  / /  

/ /  

i / 

X 

(a) (b) 

Figure 1. Example of data shifting. (a) The solid line represents the best-fit curve as determined by sight. 
The dashed line represents the best-fit power curve as determined by the method of least squares. (b) The 
y values in (a) have a constant value, Y0, subtracted from them such that the solid line passes through 
the origin. The dashed line is now more comparable to the solid line and is given by y - Yo = axb, where 

a and b are found using [5]. 

M.F, 14.3.--F 
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× 
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× 
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- y  
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× × 
× 

× 

× 

-Y+Yo × 

× 
× 
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× 

× 

× 

× 

x 

(a) (b) (e) 

Figure 2. Dealing with negative sloping curves. (a) The actual data points are plotted. The slope of a curve 
passing through these points is negative. From figure l, one can see that the shift that would produce 
the most accurate fit makes all (y - Y0) values negative in this case. (b) The negative y values are plotted 
here. The slope of a curve passing through these points is positive. (c) The negative y values are shifted 
upward by a constant, Yo, such that all y" = - y  + Y0 are positive. The method of least squares can now 
be used for the power and exponential functions. For the power function, the equation determined by 

least squares is given by y = ]Io - axh. 

through a set o f  points. Curve 1 is the best fit, as determined by sight, and curve 2 is the best fit 
o f  a power function, as determined by the method o f  least squares, wi thout  shifting the data. Figure 
l(b) shows the two curves after a constant ,  Y0, has been subtracted f rom each y value. We can 
see the effectiveness o f  a shifting o f  data. By compar ing  the correlat ion constants  for different shifts, 
one can determine which shift gives the mos t  accurate curve fit. The shifting o f  the data  should 
be done before the operat ions described in table 1 are carried out. 

In some circumstances, such as when there is a decrease in y for an increase in x, the necessary 
shifting o f  data  would produce negative values either in the x or y direction. To avoid taking the 
log o f  a negative number  we can fit the negative o f  the y values. Figure 2 demonstrates  this 
procedure.  

C O R R E L A T I O N S  OF L I G H T - W A T E R  T H E R M O D Y N A M I C  
P R O P E R T I E S t  

The following thermodynamic  properties o f  light water at saturation were fitted to approxi-  
mat ion functions: (1) specific volume/density,  (2) specific enthalpy, (3) saturation temperature,  (4) 
specific entropy, (5) specific heat and (6) dynamic  viscosity. The reference source o f  data  for all 
o f  these properties, with the exception o f  viscosity, is the N B S / N R C  S t e a m  Tab l e s  (Haar  et  al. 

1984). The subroutines by Sokolnikoff  & Redheffer (1966) were used for the calculation o f  the 

above properties. 
These subroutines were also used in conjunct ion with the equat ion for viscosity given by White 

(1975/1983). This combina t ion  was shown to yield an adequate  representation o f  viscosity by 

Kamgar-Pars i  & Sengers 0982) .  
The set o f  functions for each proper ty  are listed along with their range o f  use and the worst  

accuracy encountered over this range. Figures 3-13 show the properties and the accuracy of  the 
approximat ion,  as calculated by 

Yapprox - -  Ysteam tables • 100 [% ]. [9] 
accuracy = Ysteam tables 

For  all o f  the properties, the range o f  each function was chosen such that the accuracy is as small 
as possible and the first derivatives o f  two adjoining functions are equal at the point  where they 

tProgram diskettes, containing the programs used in the determination of the approximation functions and in the 
reproduction of property tables, can be obtained from the first author. These diskettes are available in either PDP1 l 
or IBM-PC format. 
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2.0 6.0 10.0 14.0 18.0 22.0 

PRESSURE [MPa] 

Figure  7. Sa tura t ion  tempera ture .  
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join. Thus the sets of  functions for specific volume and specific enthalpy can be used for the 
calculation of the rate form equation of  state (Garland & Sollychin 1988) and in computer 
algorithms involving the Jacobi of the system matrix. The continuity of the slopes for specific 
volume (liquid phase), density (gas phase) and specific enthalpy for both phases, is shown in figures 
14-17. 

The approximation functions can now be applied to the rate form of the equation of state (see 
the appendix). Plots of the F functions of [A.2] are shown in figures 18-22. Each of  the F functions 
yields a smooth continuous curve, as desired. 

Specific volume, liquid phase at saturation 

The functions given below are an approximation to the specific volume of  light water in the liquid 
phase, vL[m3/kg], for saturation conditions. The pressure range within which they may be used is 
0.075-21.5 MPa with the accuracy not worse than 0.14%. Figure 3 shows the accuracy of the 
approximation. 

Approximation functions: 

Ve = 1.2746977E - 4 .  P ** (0.4644339) + 0.001 

0.075 MPa ~< P ~< 1.00 MPa 

VL = 1.0476071E -- 4 * P  **(0.5651090) + 0.001022 

1.00 MPa < P ~ 3.88 MPa 

Ve = 3.2836717E- 5*P  + 1.12174735E- 3 

3.88 MPa < P ~< 8.84 MPa 

VL = 3.3551046E -- 4 * exp (5.8403566E - 2 * P) + 0.00085 

8.84 MPa < P ~< 14.463 MPa 

VL = 3.1014626E -- 8*P  **(3.284754) + 0.00143 

14.463 MPa < P < 18.052 MPa 

VL = 1.5490787E -- 11 * P ** (5.7205) + 0.001605 

18.052 MPa ~< P < 20.204 MPa 

VL = 4.1035988E -- 24 .  P** (15.03329) + 0.00189 

20.204 MPa ~< P ~< 21.5 MPa. 
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Figure 16. The slope of the specific enthalpy of the liquid 
phase at saturation. 

SO0 

O. 

.2 
"o 

400 

300 

200 

100 

0 

-100 

-200 I I 
2.0 

\ 
t t i I I I I I I 

6.0 10.0 14.0 18.0 22.0 

PRESSURE [MPa] 

Figure 17. The slope of the specific enthalpy of the vapor 
phase at saturation. 

Density, gas phase at saturation 

The following correlations give an approximation to the density of  light water in the gas phase, 
DG[kg/m3], for saturation conditions. Their range of use is 0.085-21.5 MPa with the accuracy not 
worse than 0.22%. Figure 4 shows the accuracy of  the approximation.  

Approximation functions: 

DG = 5.126076,P **(0.9475862) + 0.012 

0.085 MPa < P < 1.112 MPa 

DG = 4.630832, P **(1.038819) + 0.52 

1.112 MPa ~< P < 3 .932MPa 

Dc = 2.868721 , P  **(1.252148) + 3.80 

3.932 MPa  ~< P < 8.996 MPa  

Dc = 0.5497653,P**(1.831182) + 18.111 

8.996 MPa  ~< P < 14.628 MPa 

DG = 8.5791582E - 3 • P ** (3.176484) + 50.0 

14.628 MPa  ~< P ~< 18.21 MPa 

D~ = 3.5587113E - 6 * P  **(5.660939) + 88.0 

18.21 MPa  < P ~< 20.253 MPa 

De = 3.558734E - 1 6 , P  **(13.03774) + 138.0 

20.253 MPa  < P ~< 21.5 MPa. 

Specific enthalpy, liquid phase at saturation 

The correlations given below approximate the specific enthalpy of light water in the liquid phase, 
hL[kJ/kg], for saturation conditions. The range for which they may be used is 0.075-21.70 MPa 
with the accuracy not worse than 0.10%. Figure 5 shows the accuracy of  the approximation.  

Approximation functions: 

h L = 912.1779,P **(0.2061637) - 150.0 

0.075 MPa < P < 0.942 MPa 
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Figure 22. The function F 5. 

hL = 638.0621 * P  **(0.2963192) + 125.0 

0.942 M P a  ~< P < 4.02 M P a  

hL = 373.7665 • P ** (0.4235532) + 415.0 

4.02 M P a  ~< P < 9.964 MPa  

h L = 7 5 . 3 8 6 7 3 , P  **(0.8282384) + 900.0 

9.964 MPa  ~< P < 16.673 M P a  

hL = 0.1150827,  P **(2.711412) + 1440.0 

16.673 MPa  ~< P < 20.396 MPa  

hL = 9.1417257E -- 1 4 , P  ,(11.47287) + 1752.0 

20.396 M P a  ~< P ~< 21.70 MPa.  

Specific enthalpy, gas phase at saturation 

The following funct ions  give an approx imat ion  of the specific enthalpy of light water in the gas 
phase, hc[kJ/kg], for sa tura t ion  condit ions.  Their  range is 0.075-21.55 M P a  with the accuracy not  
worse than  0.066%. Figure 6 shows the accuracy of  the approximat ion .  

Approximation functions: 

h~ = - 4.0381938E - 6 • (3.0 - P )  ** ( 15.72364) + 2750.0 

0.075 M P a  < p ~< 0.348 M P a  

hc = - 0.5767304 • exp ( - 1.66153 • (P - 3.2)) + 2800.0 

0.348 M P a  < P ~< 1.248 M P a  

hG = -- 7.835986,(3.001 -- P )**2 .0  + 2.934312,(3.001 -- P )  + 2803.71 

1.248 MPa  < ~P < 2.955 MPa  

hc = - 1.347244, (P - 2.999)** 2.0 - 2 .326913,  (P - 2.999) + 2803.35 

2.955 MPa  ~< P ~< 6.522 M P a  

hG = -- 0 .9219176,  (P - 9.00)** 2.0 - 16.38835 • (P - 9.00) + 2742.03 

6.522 M P a  < P < 16.497 MPa  
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hc = -- 3 . 5 3 2 1 7 7 , ( P  -- 8.00)**2.0 + 2 9 . 8 1 3 0 5 , ( P  - 8.00) + 2565.00 

16.497 M P a  ~< P < 20.193 M P a  

hc = - 22.92521 , ( P  - 18.0)** 2.0 + 44.23671 , ( P  - 18.0) + 2415.01 

20.193 M P a  ~< P ~< 21.55 MPa.  

Saturation temperature 

The cor re la t ions  given below are for the sa tu ra t ion  t empera tu re  o f  l ight water ,  T~t [°C]. The  
pressure  range for  which they m a y  be used is 0.070-21.85 M P a  with the accuracy  not  worse  than  
0.02%. F igure  7 shows the accuracy  o f  the app rox ima t ion .  

Approximation functions: 

Ts,t = 236.2315 * P ** (0.1784767) - 57.0 

0.070 M P a  ~< P < 0.359 M P a  

Tat = 207.9248 * P ** (0.2092705) - 28.0 

0.359 M P a  ~< P ~< 1.676 M P a  

Tsar = 185 .0779 .P  **(0.2323217) - 5.0 

1 .676MPa  < P  ~< 8 . 5 1 1 M P a  

Ts,t = 195 .1819 .P  **(0.2241729) - 16.0 

8.511 M P a  < P < 17.69 M P a  

Ts~t = 227.2963 • P ** (0.201581) - 50.0 

17.69 M P a  ~< P ~< 21.85 M P a  

Specific entropy, liquid phase at saturation 

The funct ions given be low are an a p p r o x i m a t i o n  o f  the specific en t ropy  o f  light water  in the 
l iquid phase,  SL[kJ/kg], for  s a tu ra t ion  condi t ions .  Thei r  range  o f  use is 0.065-21.25 M P a  with the 
accuracy  not  worse than  0.12%. F igure  8 shows the accuracy  o f  the app rox ima t ion .  

Approximation functions: 

SL = 3.340244 * P ** (0.125474) --  1.20 

0.065 M P a  ~< P < 1.666 M P a  

SL = 1.748203" P **(0.2275611) + 0.40 

1.666 M P a  ~< P < 8.825 M P a  

SL = 0.2549248 * P ** (0.6381866) + 2.25 

8.825 M P a  ~< P < 16.66 M P a  

s L = 4.3632383E - 5 * (P  - 0.40)** (3.153273) + 3.50 

16.66 M P a  ~< P < 21.25 MPa.  

Specific entropy, gas phase at saturation 
The fol lowing funct ions give an a p p r o x i m a t i o n  to the specific en t ropy  o f  light water  in the gas 

phase,  sc [kJ/kg], for sa tu ra t ion  condi t ions .  Thei r  range is 0.025-21.50 M P a  with the accuracy  not  

worse  than  0.10%. F igure  9 shows the accuracy  o f  the app rox ima t ion .  

Approximation functions: 

s G = 6.58681 - 0 .335924.  l og (P)  

0.025 M P a  ~< P ~< 1.48 M P a  
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so = 7.80 - 1 . 2 2 7 6 4 4 , P  **(0.2481072) 

1.48 M P a  < P ~< 8.05 M P a  

so = 6.30 - 0.084638514 • P ** (0.9082161) 

8.05 M P a  < P ~< 15.64 M P a  

so = 5.50 - 3.6897161E - 3 , ( P  - 7.80)**(2.012466) 

15.64 M P a  < P ~< 20.00 M P a  

SG = 5.00 --  0.042830642 * (P  -- 18.7) ** (1.779526) 

20.00 M P a  < P ~< 21.5 MPa .  

Specific heat, liquid phase at saturation 
The cor re la t ions  given be low are  an a p p r o x i m a t i o n  to the specific hea t  o f  light wate r  in the l iquid 

phase,  CpL[kJ/kg K], for  s a tu ra t ion  condi t ions .  Thei r  range o f  use is 0.030-20.3 MPa .  F o r  pressures  
< 13.3 MPa ,  the accuracy  is no t  worse  than  0 .08%; for  pressures  > 13.3 MPa ,  the e r ror  can be as 
high as 0 .60%.  F igure  10 shows the accuracy  o f  the app rox ima t ion .  

Approximation functions: 

CpL = 0.247763 • P ** (0.5704026) + 4.150 

0.030 M P a  ~< P < 0.671 M P a  

CpL = 0.179305 * P ** (0.8967323) + 4.223 

0.671 M P a  ~< P < 2.606 M P a  

CpL = 0.09359843 * P ** (1.239114) + 4.340 

2.606 M P a  ~< P < 6.489 M P a  

CpL = 0.01068888 • P ** (2.11376) + 4.740 

6.489 M P a  ~< P < 11.009 M P a  

CpL = 1.333058E -- 4 * P ** (3.707294) + 5.480 

11.009 M P a  ~< P < 14.946 M P a  

CpL = 6.635658E - 3 * ( P  --  10.0)**(3.223323) + 7.350 

14.946 M P a  ~< P < 18.079 M P a  

CpL = 4.6844786E -- 6 * exp(0 .7396875,  P )  + 10.020 

18.079 M P a  ~< P ~< 20.30 MPa .  

Specific heat, gas phase at saturation 
The fol lowing cor re la t ions  give an a p p r o x i m a t i o n  to the specific heat  o f  l ight water  in the gas 

phase,  Cpo[kJ/kg K], for sa tu ra t ion  condi t ions .  Their  range o f  use is 0.050-20.40 MPa .  F o r  
pressures  < 16.0 M P a ,  the accuracy  is no t  worse  than  0.12%; for  pressures  > 16.0 MPa ,  the e r ror  
can be as high as 0 .60%.  F igure  11 shows the accuracy  o f  the app rox ima t ion .  

Approximation functions: 

C ~  = 0.6471635 * (P  - 0.006) ** (0.6400569) + 1.90 

0.050 M P a  ~< P ~< 0.599 M P a  

Cpc = 0 .5560633,  P **(0.8197355) + 2.00 

0.599 M P a  ~< P < 2.391 M P a  



346 

= 

CpG 

CpG 

= 

WM. J. GARLAND and J. D. HOSKINS 

0.3187082,  P **(1.110271) + 2.30 

2.391 M P a  ~< P < 5.661 MPa  

0.064275995 • P ** ( 1.766106) + 3.12 

5.661 MPa  ~< P < 9.458 M P a  

3 . 8 0 1 1 0 4 8 E  - 3 • P ** (2.816897) + 4.40 

9.458 MPa  ~< P ~< 12.900 MPa  

0.1876175 • exp(0.2466925 • P)  + 5.00 

12.900 M P a  < P ~< 16.309 M P a  

7.620756E - 3 • exp(0.4117289 • P )  + 9.20 

16.309 M P a  < P < 18.743 MPa  

6.5162612E -- 6*exp(0.756211 , P )  + 17.10 

18.743 MPa  ~< P < 20.40 MPa.  

Dynamic viscosity, liquid phase at saturation 

The following functions give an approximat ion  to the dynamic  viscosity o f  light water in the 
liquid phase, ViscL [10 6 kg/m s], for saturation conditions. Their range o f  use is 0.035-21.45 MPa  
with the accuracy not  worse than 0.10%. Figure 12 shows the accuracy of  the approximat ion.  

Approximation functions: 

ViscL = 111.5993 * P ** ( -  0.3425488) + 38.0 

0.035 MPa  ~< P < 0.960 MPa  

ViscL = 134 .5288 ,P  **( -0 .2848300)  + 15.0 

0.960 MPa  ~< P ~< 3.948 MPa  

ViscL = 141.5415 -- 25 .91353 , In (P)  

3.948 M Pa  < P < 9.514 MPa  

ViscL = 113.4599 • e x p ( -  0.03279562,  P )  

9.514 M Pa  ~< P < 15.074 MPa  

ViscL = 110.0 - 17.67922, exp(0.05556056 • P )  

15.074 MPa  ~< P < 18.868 MPa  

ViscL = 9 . 1 2 1 5 2 , P  -- 0 .3159837 ,P  **2.0 

18.868 M Pa  ~< P < 20.430 MPa  

ViscL = 64.0 -- 0.00261596 • exp(0.4010038) • P 

20.430 M P a  ~< P ~< 21.45 MPa.  

Dynamic viscosity, gas phase at saturation 

The following functions give an approximat ion  of  the dynamic  viscosity o f  light water in the gas 
phase, ViscG[10 -6 kg/m s], for saturat ion conditions. Their range o f  use is 0.040-21.35 MPa  with 
the accuracy not worse than 0.065%. Figure 13 shows the accuracy o f  the approximat ion.  

Approximation functions: 

Vis% = 7.473620,  P ** (0.2050149) + 7.6 

0.040 MPa  ~< P ~< 2.207 MPa  
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Table 2. Summary of approximation functions 

Property No. of functions Range of use [MPa] Worst accuracy [%] 

v L 7 0.075-21.50 0.14 
D G 7 0.085-21.50 0.22 
h L 6 0.075-21.70 0.10 
h G 7 0.075-21.55 0.066 
UL - -  0.075-21.50 0.08 
UG - -  0.085 21.50 0.I1 
Tat 5 0.070-21.85 0.02 
s L 4 0.065-21.25 0.12 
s G 5 0.025-21.50 0.10 

5 0.030-13.30 0.08 
Cp L 3 13.30-20.30 0.60 

6 0.050-16.00 0.12 
Cp o 3 16.00-20.40 0.60 
Visc L 7 0.035-21.45 0.10 
Visc G 6 0.040-21.35 0.065 

Visc~ = 3.375163 * P ** (0.3916208) + 11.8 

2.207 MPa  < P ~< 5.480 MPa  

ViSCG = 0.9169410 * P ** (0.7644731) + 15.0 

5A80 MPa < P < 9.585 MPa  

ViSCG = 5.030544 * exp(0.5045239 * P)  + 12.0 

9.585 MPa ~< P < 14.351 MPa  

ViscG = 0.4423761 ,exp(0 .1458726,P)  + 18.8 

14.351 MPa ~< P < 81.385 MPa 

Viscc = 0.01082229 ,exp(0.3071918, P)  + 22.2 

18.385 MPa  ~< P ~< 20.347 MPa  

ViscG = 6.6753655E - 6 ,  exp(0.6347700, P)  + 25.1 

20.347 MPa  < P ~< 21.35 MPa. 

S U M M A R Y  

The functions presented in this paper  allow rapid calculation of  the thermodynamic properties 
of  light water for saturation conditions. Their range of  use is from below lb to just below the critical 
point with a high enough accuracy for the purpose of thermalhydraulic systems analysis. The 
ranges and accuracies for each property are summarized in table 2. It should be noted that internal 
energy, U, can be calculated using the correlations for specific volume and specific enthalpy and 
the equation U = H -  PV. This yields an error of  <0 .11%.  
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APPENDIX 

The Rate Form of the Equation of State 

The development ,of a non-iterative equation of state for two-phase flow systems was recently 
investigated (Sollychin et al. 1985; Garland & Sollychin 1988). At present, the equation of state 
is usually solved by iterative numerical techniques. By recasting the equation of state the time 
derivative of P can be solved directly and the use of iterative methods can be eliminated. The 
time derivative form of the equation of state was developed by considering an arbitrary volume 
of two-phase fluid as a thermodynamic system where both phases are at saturation under a 
uniform saturation pressure, P. By utilizing the total mass of the fluid, M, the total enthalpy 
in the system, H, the volume of the system, V, and taking the derivatives of these quantities with 
respect to time, one obtains [A.1] which is dependent on the initial pressure and on the rate of 
change of mass, volume and enthalpy in the system: 

dM dH d V 
dP F, (P)dT + F2(P)~- + F3(P)-d- T 

dt MgF4(P) + MfFs(P) [A. 1] 

where 

and 

FI(P ) = hG.V L -- hL*VG, 

F2(P) = VG -- VL, 

F 3 ( P )  = - ( h G  - -  h L ) ,  

dVG '~h 
F4(P ) = ~-~ (VG -- VL) -- -d-fi t G--hL) 

dhL dVL h 
F s ( P ) = ~ ( v 6 - v L ) - ~ (  c - hL). 

This form involves combinations of the saturation values of specific volume and specific enthalpy 
in liquid and gas phases, and the derivatives of these properties with respect to pressure. Thus we 
can incorporate the approximation functions described above to easily solve the equation of state 
[1]. The derivatives are determined simply by taking the derivatives of the approximation functions 
with respect to pressure. 


